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Elastic constants of nematics 
Comparison between molecular theory and computer simulations 

by M. A. OSIPOV*-f and S. HESS 
Institut fur Theoretische Physik, Technische Universitat Berlin, 
Sekr. PN 7-1, Hardenbergstrasse 36, D-10623 Berlin, Germany 

(Received 29 June 1993; accepted 28 July 1993) 

We compare the ratios of the Frank elasticity coefficients calculated within a 
recently developed molecular theory, based on the approximation of perfect local 
orientational order, with the results of computer simulations presented by Frenkel, 
Allen, Tjipto-Margo and Evans for fluids of hard prolate and oblate ellipsoids. 
Good agreement is found for high densities, which correspond to those of 
thermotropic nematics, and for realistic values of the axial ratio. By constrast, at 
lower densities the approximation of perfect local order appears to be inadequate 
and the results of computer simulations follow the predictions of mean-field-like 
theories. 

1. Introduction 
The molecular-statistical theory of the curvature elasticity of nematic liquid crystals 

has been developed by many authors (see, for example [l-81). The broad interest in this 
problem from the theoretical point of view is partially determined by the fact that the 
elasticity coefficients of nematics generally are not very sensitive to the details of the 
molecular structure and are determined mainly by average geometrical parameters [9]. 
In fact, many compounds with different molecular structures but approximately the 
same axial ratio possess rather similar values of the elasticity coefficients K ,  and K ,  
[9], as was noticed first by Schadt and Miiller [lo] who compared the values of K ,  and 
K ,  for a number of nematics composed of molecules with different rings. Thus there is a 
good possibility of obtaining reasonable results using very simple molecular models 
which can be treated effectively within the molecular-statistical approach. 

The first calculations of the elasticity coefficients were performed in the molecular 
field approximation [l-41 and the results accounted for the full anisotropy of the 
Frank elastic coefficients and also described qualitatively the temperature variation of 
these parameters [3,4]. At the same time, the quantitative agreement between theory 
and experiment remained rather poor [9]. Later, the general expressions for the 
elasticity coefficients were obtained using the density functional theory of liquid 
crystals [5-81. In this approach the coefficients are expressed in terms of the (pair) 
direct correlation function of the nematic fluid. The actual calculations, however, were 
performed with the help of simple approximations for the correlation function. 

Very recently a different approach has been proposed which is based on the 
approximation of perfect local orientational order in anisotropic fluids [I 11. This 
approximation can be considered as a simple (but rather crude) alternative to  the mean 
field theory, since it is assumed that the molecular symmetry axes are approximately 
parallel within the direct correlation radius which is of the order of molecular length. 
This model description of strong short-range orientational correlations in nematics has 
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been considered previously in the analysis of the viscosity [ 121, of the diffusion [ 131 and 
of the static structure factor [ 14,151. The approximation of perfect local order has been 
used in [ 111 to get simple analytical expressions for the elasticity coefficients of the 
model nematic composed of molecules with ellipsoidal equipotential surfaces. In such 
model systems, it is possible to  perform the local transformation to a reference hard 
sphere fluid which is characterized by an isotropic correlation function. As shown in 
[l  11, this approach yields expressions for the K , / K 3  which are closer to experimental 
data for rigid molecules than the results of the mean field theory. 

A more detailed comparison of different models for intermolecular correlations in 
nematics has become possible recently, since computer simulations of the elasticity 
coefficients have been performed for nematics composed of ellipsoidal and sphero- 
cylindrical particles [16,17]. In  this paper we compare the results of these simulations 
with the results of the analytical theory [ l  11, based on the approximation of perfect 
local order combined with an affine transformation model, and also with the results of 
two mean field-like theories discussed in [16]. We also make an attempt to draw some 
conclusions about the role of short-range orientational correlations in nematics at 
various densities. 

2. Simple expressions for the elasticity coefficients 
According to [l 11, the model of perfect local orientational order corresponds to the 

following approximation for the direct correlation function of two neighbouring 
molecules in the anisotropic fluid 

C2(ul,rl2,u2)=47cC”,’(r,,, ul)6(ul -uu,)+const., ( 1 )  
for r l , < r :  where r: is the direct correlation radius and the unit vectors u1 and u2  
determine the orientations of the symmetry axes of the molecules 1 and 2. This 
approximation implies that the molecular symmetry axes are parallel when the 
intermolecular separation is less than the direct correlation radius rz. For r I 2  > r z  the 
orientational correlations are assumed to decay rapidly. The approximation of perfect 
local order seems to be reasonable for nematic fluids composed of strongly anisotropic 
particles. It should be noted that a similar assumption has been shown to be successful 
even for the isotropic phase of fluids composed of molecules which are much less 
anisotropic than those of typical mesogens [17]. It is assumed that the local order 
characterized by the pair correlation is also present in the isotropic phase not far from 
the transition point and that only the long-range orientational order, which is 
determined by the one-particle distribution function, disappears. 

The analytical results for the elasticity coefficients have been obtained in [l 11 in this 
approximation using the simple model of nematics composed of particles with 
ellipsoidal equipotential surfaces. The properties of such a fluid can be linked with 
those ofa reference fluid of spherical particles at  the same density which is characterized 
by the direct correlation function Cref. 

The final expressions for the elasticity coefficients can be written as [ 1 11 
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Elastic constants of nematics 847 

with 

2 Q2-1 A=--  
7 Q 2 + 2  (3) 

and 

with 

where Q = L/D is the molecular axial ratio and P,, P4 are the orientational order 
parameters; the first one is the Maier-Saupe order parameter S .  

It should be noted that the general structure of equations (2) is practically the same 
as in the molecular-field approximation [2,3] (since in both cases the expansion in 
terms of the orientational order parameters had been performed). On the other hand 
the dependence of the coefficients on the molecular parameters is essentially different. 

In equation (4), the parameter RA, which is determined by the direct correlation 
function of the reference fluid of spherical particles, influences only the absolute value of 
the average elastic constant R. At the same time the ratios of the elasticity coefficients 
depend only on the molecular axial ratio Q and on the order parameters P ,  and 
Thus it is possible to perform a direct comparison between the results of this theory and 
of computer simulations [16] by calculating the ratios of the elasticity coefficients and 
taking the values of the order parameters from simulations. This comparison is 
performed in the following section. 

3. Comparison between theory and simulations 
In the table we present the values of the ratios K3,’K2 and K , / K ,  calculated with the 

help of equations (2) and the corresponding results of the computer simulations taken 
from [16]. For comparison, we also present the results of two other mean-field-like 
theories which are discussed in more detail in [16], where they are denoted as ‘direct 
integration’ and ‘perturbation’ (see table 1 of [16]). The ratios of elasticity coefficients 
have been calculated for several axial ratios Q which correspond to rod-like and disc- 
like particles and also for different values of the orientational order parameters. The 
values of P4 and P,  are taken also from simulation and correspond to different densities 
p*.  Part of these data are also presented in graphical form in figure 1 and figure 2 for 
prolate and oblate ellipsoids, respectively. 

One can see from the table and the figures that for realistic values of the axial ratio 
Q = 5 (prolate ellipsoids) and Q = 0.2 (oblate ellipsoids), and for high densities which 
correspond to those of thermotropic nematics, there is a good agreement between the 
results of computer simulations and the present theory, both for rod-like and disc-like 
particles. At the same time, the results of the two ‘mean-field’ theories are not very close 
to the simulation results. By contrast, at lower densities the results of the computer 
simulations follow the predictions of the ‘mean-field’ theories, while the approximation 
of perfect local orienational order appears to be inadequate. 

This behaviour can be understood if we take into account that at lower densities the 
present system mimics, in fact, a lyotropic liquid crystal with relatively high free volume 
per particle. In such systems, one can hardly expect a perfect orientational order even 
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Figure 1. Comparison between the results of the theory [ l  11 and of the computer simulations 

[16] for the ratios K , / K ,  (a) and K J K ,  (h) of the elasticity coefficients for rod-like 
molecules; (0 )  theory, based on the approximation of perfect local orientational order 
[ 1 11; (H) computer simulations [ 161; (0) and (A)  ‘mean field‘ theories discussed in [ 161. 

within a group of neighbouring molecules. At the same time, the ‘mean-field’ theories, 
discussed in detail in [ 161, should work well in this limit. Indeed, the difference between 
the two theories, which use the perturbation method and the direct integration, 
respectively, is not very great [16]. In the first theory, the one-particle distribution 
function is expanded in terms of the orientational order parameters, while in the second 
theory, the correlation function is directly integrated using the general expressions for 
the elasticity coefficients [S]. In both cases, however, the orientational correlations are 
taken into account within the lowest order approximation (which corresponds to the 
first Mayer graph in the expansion of the direct correlation function). This approxim- 
ation is similar to the Onsager model (except for the density dependence) and is known 
to give good results when the volume fraction of particles in not too large. 

Note that at higher densities therc is a ‘change of tcndency’ in the behaviour of the 
results of computer simulations. Indeed, the ratios K J K ,  and K , / K ,  deviate from the 
results of the ‘mean-field’ theories and grow rapidly in the direction of the values 
obtained in the approximation of perfect local order. We can interpret this fact as an 
onset of strong short-range orientational correlations which become very important at 
high densities (and high values of the nematic order parameter). It is also interesting to 
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Figure 2. Comparison between the results of the theory [ 111 and of the computer simulations 

[16] for the ratios K , / K ,  (a)  and K , / K ,  (h )  of the elasticity coefficients for disc-like 
molecules; ( 0 )  theory, based on the approximation of perfect local orientational order 
[ 111; ( W )  computer simulations [ 161; (0) and ( A )  ‘mean field’ theories discussed in [16]. 

note that the agreement between the theory and the computer simulations is better for 
disc-like particles. This fact is also not in contradiction with simple intuition, since two 
neighbouring ‘discs’ should have a stronger tendency to be parallel in comparison with 
two rods at the same density. 

4. Conclusions 
As shown in the previous section, the ratios of the elasticity coefficients calculated 

with the help of the very simple equations (2) appear to be in reasonable agreement with 
computer simulations for realistic densities and molecular axial ratios. This indicates 
that a strong short-range orientational order is indeed present in such systems. On the 
other hand, the role of short-range orientational correlations is obviously over- 
estimated in this simple model and a more realistic theory should be based on a weaker 
approximation for the direct correlation function. It should be noted also that there are 
at least two additional factors which can be important in real liquid crystals and which 
have not been taken into account in the simple theory presented in [l 11. 

Firstly, the approximation (1) for the direct correlation function can be reasonable 
only at short intcrmolecular distances. At large separations the molecules are no longer 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Elastic constants of nemutics 85 1 

parallel and the long-range ‘tail’ of the corrclation function must be taken into account 
separately. The most simple possibility is to write the direct correlation function as a 
sum of two terms: 

where CZs(1,2) is the short range part of the correlation function, which can be 
approximated by equation ( l ) ,  and V,(l, 2) is the long-range part of the intermolecular 
interaction potential. This long-range part of C,( 1,2) should make an additional 
contribution to the elasticity coefficients of nematics. 

Secondly, one can readily find the specific intermolecular interactions in real 
nematics which are not described within the ellipsoidal model. For example, side by 
side interactions between elongated molecules can be important since they are 
responsible for short-range smectic correlations. These forces should be taken into 
account in particular when the temperature range of the nematic phase is small due to a 
strong tendency to form smectic phases. 

This research was conducted under the auspices of the SFB ‘Anisotrope Fluide’. 
M. A. Osipov gratefully acknowledges the financial support of a fellowship from the 
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